Spherical (De)Convolution for Inverse Rendering

Ravi Ramamoorthi

Columbia Vision and Graphics Center Columbia University

Workshop on Inverse Problems at Columbia: May 3, 2007

Photorealistic Rendering

Materials/Lighting
(Texture Reflectance[BRDF] Lighting)

Realistic input models required

Arnold Renderer: Marcos Fajardo 80's,90's: Physically based

Inverse Rendering

Inverse Rendering

Inverse Rendering

Inverse Problems: Difficulties

Ill-posed (ambiguous)

Angular width of Light Source

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Spherical Harmonic Identities

Environment Maps

Miller and Hoffman, 1984

Later, Greene 86, Cabral 87, 99,...

Reflection

$$B(\theta_o) = \int_{-\pi/2}^{\pi/2} L(\theta_i) \rho(\theta_i, \theta_o) d\theta_i$$

Reflected Light Field Lighting BRDF

Reflection as Convolution (2D)

$$B(\theta_o) = \int_{-\pi/2}^{\pi/2} L(\theta_i) \rho(\theta_i, \theta_o) d\theta_i$$

Reflected Light Field Lighting BRDF

Reflection as Convolution (2D)

$$B(\theta_o) = \int_{-\pi/2}^{\pi/2} L(\theta_i) \rho(\theta_i, \theta_o) d\theta_i$$

Reflected Light Field Lighting BRDF
$$B(\alpha, \theta_o) = \int_{-\pi/2}^{\pi/2} L(\theta_i - \alpha) \rho(\theta_i, \theta_o) d\theta_i$$

Reflection as Convolution (2D)

R. Ramamoorthi and P. Hanrahan "Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces under Distant Illumination" SPIE Photonics West 2001: Human Vision and Electronic Imaging VI pp 195-208

Related Work

- Qualitative observation of reflection as convolution: Miller & Hoffman 84, Greene 86, Cabral et al. 87,99
- Reflection as frequency-space operator: D'Zmura 91
- Lambertian reflection is convolution: Basri Jacobs 01

Our Contributions

- Explicitly derive frequency-space convolution formula
- Formal quantitative analysis in general 3D case

Spherical Harmonics + M $Y_{lm}(heta, arphi)$ 0 1 X y Z 2 $3z^2 - 1$ ZXyzХУ

-2 -1 0 1 2

Spherical Harmonic Analysis

2D:

$B(\alpha, \theta_o) = \int_{-\pi/2}^{\pi/2} L(\theta_i - \alpha) \quad \rho(\theta_i, \theta_o) \quad d\theta_i$

$$B_{l,p} = 2\pi L_l \rho_{l,p}$$

3D:

 $B(\alpha,\beta,\theta_o,\varphi_o) = \int_0^{\frac{\pi}{2}} \int_0^{2\pi} L(R_{\alpha,\beta}[\theta_i,\varphi_i])\rho(\theta_i,\varphi_i,\theta_o,\varphi_o) d\theta_i d\varphi_i$

$$B_{lm,pq} = \Lambda_l L_{lm} \rho_{lq,pq}$$

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Spherical Harmonic Identities

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- BRDF is the filter
- Reflection on a curved surface is convolution

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- BRDF is the filter
- Reflection on a curved surface is convolution

Filter is Delta function : Output = Signal

Mirror BRDF : Image = Lighting [Miller and Hoffman 84]

Image courtesy Paul Debevec

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- BRDF is the filter
- Reflection on a curved surface is convolution

Signal is Delta function : Output = Filter

Point Light Source : Images = BRDF

[Marschner et al. 00]

Phong, Microfacet Models

Mirror

Roughness

Illumination estimation ill-posed for rough surfaces

Analytic formulae in R. Ramamoorthi and P. Hanrahan "A Signal-Processing Framework for Inverse Rendering" SIGGRAPH 2001 pp 117-128

Lambertian

Incident radiance (mirror sphere)

$$A_{l} = 2\pi \frac{(-1)^{\frac{l}{2}-1}}{(l+2)(l-1)} \left[\frac{l!}{2^{l} \left(\frac{l}{2}!\right)^{2}} \right] \quad l \text{ even}$$

R. Ramamoorthi and P. Hanrahan "On the Relationship between Radiance and Irradiance: Determining the Illumination from Images of a Convex Lambertian Object" Journal of the Optical Society of America A 18(10) Oct 2001 pp 2448-2459

R. Basri and D. Jacobs "Lambertian Reflectance and Linear Subspaces" ICCV 2001 pp 383-390

Inverse Lighting

Given: B,p find L

$$B = L \otimes \rho$$
$$B_{lm,pq} = \Lambda_l L_{lm} \rho_{lq,pq}$$
$$L_{lm} = \frac{1}{\Lambda_l} \frac{B_{lm,pq}}{M_l}$$

Well-posed unless denominator vanishes

BRDF should contain high frequencies : Sharp highlights

 $\Lambda_l~
ho_{lq,pq}$

Diffuse reflectors low pass filters: Inverse lighting ill-posed

Inverse BRDF

Given: B,L find ρ $\rho_{lq,pq} = \frac{1}{\Lambda_l} \frac{B_{lm,pq}}{L_{lm}}$

Well-posed unless L_{lm} vanishes

- Lighting should have sharp features (point sources, edges)
- BRDF estimation ill-conditioned for soft lighting

Directional

Source

Area source Same BRDF

Practical Example

- 3 photographs of cat sculpture
- Complex unknown illumination
- Geometry known
- Estimate microfacet BRDF and distant lighting

New View, Lighting

Photograph

Rendering

Ramamoorthi and Hanrahan, 01c

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
 Other Applications
- Spherical Harmonic Identities

Computing Irradiance

Classically, hemispherical integral for each pixel

- Lambertian surface is like a low pass filter
- Frequency-space analysis (spherical harmonics)

9 Parameter Approximation

RMS Error = 1%

For any illumination, average error < 2% [Basri, Jacobs 01]

Ramamoorthi and Hanrahan 01b

Real-Time Rendering

Motivation: Interactive rendering with natural illumination and realistic, measured materials

Computer Vision Complex Illumination

Low Dimensional Subspace

 Lighting Insensitive Recognition (Basri and Jacobs 01, Lee et al. 01, Ramamoorthi 02, ...)

Photometric stereo, shape acquisition

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Spherical Harmonic Identities

Mahajan, Ramamoorthi, Curless ECCV 06, PAMI 07

Direct Object Relighting

Checking Image Consistency

- Easy to tamper / splice images
 - Image processing software widely available
- In news reporting and other applications
 - Need to detect tampering or photomontage
 - Verify image consistency

Try to check consistency of lighting, shading

Checking Image Consistency

Fonda Speaks To Vietnam Veterans At Anti-War Rally

Actress And Anti-War Activist Jane Fonda Speaks to a crowd of Vietnam Veterans as Activist and former Vietnam Vet John Kerry (LEFT) listens and prepares to speak next concerning the war in Vietnam (AP Photo)

Material 1

 $\boldsymbol{B}_{lm}^{11} = \boldsymbol{A}_l^1 \boldsymbol{L}_{lm}^1$

Material 2

 $B_{lm}^{12} = A_l^2 L_{lm}^1$

Material 1

 $B_{lm}^{11} = A_l^1 L_{lm}^1$

 \sim Lighting 1 $B_{lm}^{21} = A_l^1 L_{lm}^2$ Material 2

 $B_{lm}^{12} = A_l^2 L_{lm}^1$

 $B_{lm}^{11}B_{lm}^{22} = A_l^1 A_l^2 L_{lm}^1 L_{lm}^2$

Material 1

 $B_{lm}^{11} = A_l^1 L_{lm}^1$

Material 2

 $\overline{B_{lm}^{12}} = \overline{A_l^2 L_{lm}^1}$

 $B_{lm}^{22} = A_l^2 L_{lm}^2$

 $B_{lm}^{11}B_{lm}^{22} = A_l^1 A_l^2 L_{lm}^1 L_{lm}^2$

 $B_{lm}^{12}B_{lm}^{21} = A_l^1 \overline{A_l^2 L_{lm}^1 L_{lm}^2}$

Material 1

 $B_{lm}^{11} = A_l^1 L_{lm}^1$

Material 2

 $B_{lm}^{12} = A_l^2 L_{lm}^1$

 $B_{lm}^{22} = A_l^2 L_{lm}^2$

 $B_{lm}^{11}B_{lm}^{22} = A_l^1 A_l^2 L_{lm}^1 L_{lm}^2$ $B_{lm}^{12}B_{lm}^{21} = A_l^1 A_l^2 L_{lm}^1 L_{lm}^2$

 $B_{lm}^{11}B_{lm}^{22} = B_{lm}^{12}B_{lm}^{21}$

Independent of Lighting and **BRDF**

Image Estimation Framework

Material 1

 B_{lm}^{11}

Material 2

 B_{lm}^{12}

 $B_{lm}^{11}B_{lm}^{22} = B_{lm}^{12}B_{lm}^{21}$

Image Estimation

IOur MethodActualNo BRDF and lighting known or estimated

Image Consistency Checking

Spliced Image

Image Consistency Checking

Spliced Image

Image Consistency Checking

Tampered Cat Single Image Identity Two diffuse + specular case Re

Two Lightings – Same Reflectance Identity

Two Materials – Two Lightings identity

Signal Processing for Appearance

Signal Processing widely applicable visual appearance

- Convolution relation for cast shadows
 [Soler and Sillion 98, Ramamoorthi et al. 04]
- Convolution with glows for participating media (mist, fog, haze) [Sun et al. 05]
- Signal-Processing analysis of light field and reflectance [Chai et al. 00, Zickler et al. 06]
- Triple Product Integrals [Ng et al. 04]
- First Order Analysis [Ramamoorthi et al. 06]

Acknowledgements

- Collaborators
 - Dhruv Mahajan
 - Brian Curless
 - Pat Hanrahan
- Funding: NSF, Sloan Foundation, ONR

http://www.cs.columbia.edu/~ravir

Questions