Spherical (De)Convolution for Inverse Rendering

Ravi Ramamoorthi

Columbia Vision and Graphics Center Columbia University

Workshop on Inverse Problems at Columbia: May 3, 2007

Photorealistic Rendering

Geometry

70's, 80's: Splines 90's: Range Data \longrightarrow

Materials/Lighting

(Texture Reflectance[BRDF] Lighting)
Realistic input models required

Rendering Algorithm

Arnold Renderer: Marcos Fajardo 80's, 90^{\prime} 's: Physically based

Inverse Rendering

Inverse Rendering

Inverse Rendering

Inverse Problems: Difficulties

Ill-posed (ambiguous)

Surface roughness

Angular width of Light Source

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Spherical Harmonic Identities

Environment Maps

Miller and Hoffman, 1984

Later, Greene 86, Cabral 87, 99,...

Reflection

$$
B\left(\theta_{o}\right)=\int_{-\pi / 2}^{\pi / 2}
$$

Reflected Light Field
$L\left(\theta_{i}\right) \rho\left(\theta_{i}, \theta_{o}\right) d \theta_{i}$
Lighting BRDF

Reflection as Convolution (2D)

$$
B\left(\theta_{o}\right)=\int_{-\pi / 2}^{\pi / 2}
$$

Reflected Light Field

$L\left(\theta_{i}\right) \rho\left(\theta_{i}, \theta_{o}\right) d \theta_{i}$
Lighting BRDF

Reflection as Convolution (2D)

$$
B\left(\theta_{0}\right)=\int_{-\pi / 2}^{\pi / 2} \quad L\left(\theta_{i}\right) \rho\left(\theta_{i}, \theta_{o}\right) d \theta_{i}
$$

Reflected Light Field Lighting BRDF

$$
B\left(\alpha, \theta_{o}\right)=\int_{-\pi / 2}^{\pi / 2} L\left(\theta_{i}-\alpha\right) \rho\left(\theta_{i}, \theta_{o}\right) d \theta_{i}
$$

Reflection as Convolution (2D)

$$
B\left(\alpha, \theta_{0}\right)=\int_{-\pi / 2}^{\pi / 2} L\left(\theta_{i}-\alpha\right) \rho\left(\theta_{i}, \theta_{o}\right) d \theta_{i}
$$

$$
\begin{gathered}
B=L \otimes \rho \\
B_{l, p} \stackrel{\text { |Fourier analysis }}{=} 2 \pi L_{l} \rho_{l, p}
\end{gathered}
$$

Spatial: integral

Frequency: product

Related Work

- Qualitative observation of reflection as convolution: Miller \& Hoffman 84, Greene 86, Cabral et al. 87,99
- Reflection as frequency-space operator: D'Zmura 91
- Lambertian reflection is convolution: Basri Jacobs 01

Our Contributions
" Explicitly derive frequency-space convolution formula

- Formal quantitative analysis in general 3D case

Spherical Harmonics

Spherical Harmonic Analysis

2D:

$$
\begin{aligned}
B\left(\alpha, \theta_{o}\right) & =\int_{-\pi / 2}^{\pi / 2} L\left(\theta_{i}-\alpha\right) \quad \rho\left(\theta_{i}, \theta_{o}\right) \quad d \theta_{i} \\
B_{l, p} & =2 \pi L_{l} \rho_{l, p}
\end{aligned}
$$

3D:
$B\left(\alpha, \beta, \theta_{o}, \varphi_{o}\right)=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} L\left(R_{\alpha, \beta}\left[\theta_{i}, \varphi_{i}\right]\right) \rho\left(\theta_{i}, \varphi_{i}, \theta_{o}, \varphi_{o}\right) d \theta_{i} d \varphi_{i}$
$B_{l m, p q}=\Lambda_{l} L_{l m} \rho_{l q, p q}$

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Spherical Harmonic Identities

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- BRDF is the filter
- Reflection on a curved surface is convolution

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- BRDF is the filter
- Reflection on a curved surface is convolution

Filter is Delta function : Output = Signal
Mirror BRDF : Image $=$ Lighting

[Miller and Hoffman 84]

Image courtesy Paul Debevec

Insights: Signal Processing

Signal processing framework for reflection

- Light is the signal
- BRDF is the filter
- Reflection on a curved surface is convolution

Signal is Delta function : Output = Filter
Point Light Source : Images = BRDF
[Marschner et al. 00]

Phong, Microfacet Models

Mirror

Roughness

Illumination estimation

 ill-posed for rough surfacesAnalytic formulae in R. Ramamoorthi and P. Hanrahan "A Signal-Processing Framework for Inverse Rendering" SIGGRAPH 2001 pp 117-128

Frequency

Lambertian

Incident radiance (mirror sphere)

Irradiance (Lambertian)

R. Ramamoorthi and P. Hanrahan "On the Relationship between Radiance and Irradiance: Determining the Illumination from Images of a Convex Lambertian Object"
Journal of the Optical Society of America A 18(10) Oct 2001 pp 2448-2459
R. Basri and D. Jacobs "Lambertian Reflectance and Linear Subspaces" ICCV 2001 pp 383-390

Inverse Lighting

Given: B, ρ find L

$$
\begin{aligned}
B & =L \otimes \rho \\
B_{l m, p q} & =\Lambda_{l} L_{l m} \rho_{l q, p q} \\
L_{l m} & =\frac{1}{\Lambda_{l}} \frac{B_{l m, p q}}{\rho_{l q, p q}}
\end{aligned}
$$

Well-posed unless denominator vanishes

- BRDF should contain high frequencies : Sharp highlights
- Diffuse reflectors low pass filters: Inverse lighting ill-posed

Inverse BRDF

Given: B,L find ρ

$$
\rho_{l q, p q}=\frac{1}{\Lambda_{l}} \frac{B_{l m, p q}}{L_{l m}}
$$

Well-posed unless $L_{l m}$ vanishes

- Lighting should have sharp features (point sources, edges)
- BRDF estimation ill-conditioned for soft lighting

Directional
Source

Area source

Same BRDF

Practical Example

3 photographs of cat sculpture

- Complex unknown illumination
- Geometry known
- Estimate microfacet BRDF and distant lighting

New View, Lighting

Photograph

Rendering
Ramamoorthi and Hanrahan, 01c

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Other Applications
- Spherical Harmonic Identities

Computing Irradiance

- Classically, hemispherical integral for each pixel

Incident

 Radiance

Irradiance

- Lambertian surface is like a low pass filter
- Frequency-space analysis (spherical harmonics)

9 Parameter Approximation

Exact image

Order 2 9 terms

RMS Error = 1\%

 For any illumination, average error < 2\% [Basri, Jacobs 01]
Real-Time Rendering

Motivation: Interactive rendering with natural illumination and realistic, measured materials

Computer Vision Complex Illumination

Low Dimensional Subspace

- Lighting Insensitive Recognition (Basri and Jacobs 01, Lee et al. 01, Ramamoorthi 02, ...)

- Photometric stereo, shape acquisition

Outline

- Motivation for Inverse Rendering
- Theory of Reflection as Convolution
- Signal Processing Framework
- Spherical Harmonic Identities

Direct Object Relighting

Checking Image Consistency

- Easy to tamper / splice images
- Image processing software widely available
- In news reporting and other applications
- Need to detect tampering or photomontage
- Verify image consistency
- Try to check consistency of lighting, shading

Checking Image Consistency

Fonda Speaks To Vietnam Veterans At Anti-War Rally

Actress And Ant-War Activist Jane Fonda Speaks to a crowd of Vatnam Veterans as Activistand former Vitham Vet John Kery (LEFT) listens and prepares to speak next conceming the war in Vietham (AP Photo)

Two Objects - Two Lightings

Material 1
Material 2

$$
B_{l m}^{11}=A_{1}^{1} L_{l m}^{1}
$$

$$
B_{l m}^{12}=A_{l}^{2} L_{l m}^{1}
$$

$$
B_{l m}^{21}=A_{i}^{1} L_{l m}^{2}
$$

$$
B_{l m}^{22}=A_{i}^{2} L_{l m}^{2}
$$

Two Objects - Two Lightings

Material 1

$$
B_{l m}^{11} B_{l m}^{22}=A_{l}^{1} A_{y}^{2} L_{l m}^{1} L_{l m}^{2}
$$

$$
B_{l m}^{21}=A_{i}^{1} L_{l m}^{2}
$$

$$
B_{l m}^{22}=A_{l}^{2} L_{l m}^{2}
$$

Two Objects - Two Lightings

Material 1

Material 2

$$
\begin{aligned}
& B_{l m}^{11} B_{l m}^{22}=A_{l}^{1} A_{y}^{2} L_{l m}^{1} L_{l m}^{2} \\
& B_{l m}^{12} B_{l m}^{21}=A_{l}^{1} A_{i}^{2} L_{l m}^{1} L_{l m}^{2}
\end{aligned}
$$

Two Objects - Two Lightings

Material 1

$$
B_{l m}^{12}=A_{i}^{2} L_{l m}^{1}
$$

$$
\begin{aligned}
& B_{l m}^{11} B_{l m}^{22}=A_{l}^{1} A_{y}^{2} L_{l m}^{1} L_{l m}^{2} \\
& B_{l m}^{12} B_{l m}^{21}=A_{l}^{1} A_{i}^{2} L_{l m}^{1} L_{l m}^{2}
\end{aligned}
$$

$$
B_{l m}^{11} B_{l m}^{22}=B_{l m}^{12} B_{l m}^{21}
$$

Independent of Lighting and BRDF

Image Estimation Framework

Material 1

Material 2

$$
B_{l m}^{12}
$$

$$
\begin{gathered}
B_{l m}^{11} B_{l m}^{22}=B_{l m}^{12} B_{l m}^{21} \\
B_{l m}^{22}=\frac{B_{l m}^{12} B_{l m}^{21}}{B_{l m}^{11}}
\end{gathered}
$$

$B_{l m}^{21}$
$B_{l m}^{22}$

Image Estimation

Image Consistency Checking

Image Consistency Checking

Image Consistency Checking

Tampered Cat

- Untampered Cat

Tampered Cat

Single Image Identity diffuse + specular case

Two Lightings - Same Reflectance Identity

Two Materials - Two Lightings identity

Signal Processing for Appearance

Signal Processing widely applicable visual appearance

- Convolution relation for cast shadows [Soler and Sillion 98, Ramamoorthi et al. 04]
- Convolution with glows for participating media (mist, fog, haze) [Sun et al. 05]
- Signal-Processing analysis of light field and reflectance [Chai et al. 00, Zickler et al. 06]
- Triple Product Integrals [Ng et al. 04]
- First Order Analysis [Ramamoorthi et al. 06]

Acknowledgements

- Collaborators
- Dhruv Mahajan
- Brian Curless
- Pat Hanrahan
- Funding: NSF, Sloan Foundation, ONR
http://www.cs.columbia.edu/~ravir

Questions

