Fluorescence and Bioluminescence Tomography for Molecular Imaging

Alexander D. Klose

Department of Radiology Columbia University

Optical Window Of Biological Tissue

Levels of Optical Imaging

Optical Imaging

imaging of non-specific changes related to morphology and physiology

endogenous chromophores or non-specific contrast agents

developed disease

Optical Molecular Imaging

imaging of location and expression levels of specific genes and proteins that are part in the molecular pathways of disease

targeted fluorescent probes

early disease

Optical Molecular Imaging

Cells incubated with green-fluorescent Alexa Fluor 488 transferrin, then fixed and permeabilized. Transferrin receptors were identified with anti-transferrin receptor, mouse IgG1 monoclonal antibody and visualized with red-fluorescent Alexa Fluor 555 goat anti-mouse IgG antibody. Yellow fluorescence indicates regions of co-localization. Nuclei were stained with DAPI. (Source: Invitrogen)

Optical Molecular Imaging

© Klose 5

Optical Reporter Probes

Agent	Excitation	Emission	Extinction	Quantum
	[nm]	[nm]	[cm ⁻¹ M ⁻¹]	Yield
Dye:				
Су5	649	670	250,000	0.28
Cy5.5	675	694	250,000	0.28
Cy7	743	767	200,000	0.29
Protein:				
GFP	489	508	55,000	0.6
DsRed	558	583	57,000	0.79
Catalyst-Su	bstrate:			
Luciferase/				
Luciferin	N.A.	560	N.A.	0.88

Inverse Source Problem

reconstructed source

source power density Q [Watts cm⁻³] [photons s⁻¹ cm⁻³]

measured light intensity

boundary current J⁺ [Watts cm⁻²] [photons s⁻¹ cm⁻²]

Overview

Forward Model J⁺=F(Q)

Inverse Model $Q=F^{-1}(J^{+})$

Fluorescence Tomography

Bioluminescence Tomography

Radiative Transfer Model

balance equation

Radiative Transfer Model

© Klose 11

Radiative Transfer Model - Approximations

Diffusion Equation:

$$-\nabla\cdot\frac{1}{3\mu_{_{a1}}}\nabla\phi_{_{1}}+\mu_{_{a}}\phi_{_{1}}=Q$$

$$-\nabla \cdot \frac{1}{3\mu_{\alpha 1}} \nabla \phi_1 + \mu_{\alpha} \phi_1 = Q + \left(\frac{3}{2}\mu_{\alpha}\right) \phi_2$$

SP₃ Equations:

$$-\nabla \cdot \frac{1}{7\mu_{a3}} \nabla \phi_2 + \left(\frac{4}{9}\mu_a + \frac{5}{9}\mu_{a2}\right) \phi_2 = -\frac{2}{3}Q + \left(\frac{3}{2}\mu_a\right) \phi_1$$

Radiative Transfer Model - Fluorescence

excitation

$$\begin{split} \Omega \cdot \nabla \Psi^{\mathsf{x}} + \left(\mu_{a} + \mu_{a}^{\mathsf{x} \to \mathsf{m}} + \mu_{s}\right) \Psi^{\mathsf{x}} &= \mu_{s} \int_{4\pi} p(\Omega \cdot \Omega') \Psi^{\mathsf{x}} d\Omega' \\ \Psi^{\mathsf{x}} &= \mathsf{S}, \quad \mathsf{n} \cdot \Omega < \mathsf{O} \\ \Psi^{\mathsf{x}} &= \mathsf{S}, \quad \mathsf{n} \cdot \Omega < \mathsf{O} \\ \Phi^{\mathsf{x}} &= \int_{4\pi} \Psi^{\mathsf{x}} d\Omega \\ \Phi^{\mathsf{x}} &= \int_{4\pi} \Psi^{\mathsf{x}} d\Omega \\ \Phi^{\mathsf{x}} &= \int_{4\pi} \Psi^{\mathsf{x}} d\Omega' \\ \Psi^{\mathsf{m}} &= \mathsf{O}, \quad \mathsf{n} \cdot \Omega < \mathsf{O} \end{split}$$

Radiative Transfer Model - Bioluminescence

Radiative Transfer Model - Fluorescence

emission

$$\boldsymbol{\Omega}\cdot\nabla\Psi+\left(\boldsymbol{\mu}_{a}+\boldsymbol{\mu}_{s}\right)\Psi=\frac{q}{4\pi}+\boldsymbol{\mu}_{s}\int_{4\pi}p(\boldsymbol{\Omega}\cdot\boldsymbol{\Omega}')\Psi d\boldsymbol{\Omega}'$$

$$\Psi^{m} = 0$$
, $n \cdot \Omega < 0$

3D Numerical Mouse Model 91 whole-body MRIs Cartesian grid with of mouse 80,000 points 0 mm 54 mm

© Klose 18

Numerical Example

Calculated Boundary Flux

fluorescence

excitation

↔ 1 cm 1.8 mm³, 400nM Cy5.5

Overview

Forward Model J⁺=F(Q)

Inverse Model $Q=F^{-1}(J^{+})$

Fluorescence Tomography

Bioluminescence Tomography

Inverse Model

nonlinear:

 $Q=F^{-1}(J^{+},Q)$

linear:

fluorescence

fluorescence approximation bioluminescence

Nonlinear: Local Optimization Forward Model (Q_0) Error Function (Q₀) $\Phi(Q) = \frac{1}{N} \sum_{n=1}^{N} \frac{(Y_n - J_n^+(Q))^2}{\sigma_n^2}$ Measurements Gradient Calculation Search Direction Update Q_n Forward Model (Qn) Search algorithm Error Function (Q_n) no Δ Error Function (Q_n, Q_{n-1}) < ε

Nonlinear: Local Optimization Forward Model (Q_0) Error Function (Q₀) $\Phi(Q) = \frac{1}{N} \sum_{n=1}^{N} \frac{(Y_n - J_n^+(Q))^2}{\sigma_n^2}$ Measurements **Gradient Calculation** Search Direction New search direction Update Q_n Forward Model (Q_n) Error Function (Q_n) yes Δ Error Function (Q_n, Q_{n-1}) < ε

Computation Of Search Direction

$$\frac{\partial \Phi}{\partial \mu_{a}} = \left(\frac{\partial \Phi}{\partial \mu_{a1}}, \frac{\partial \Phi}{\partial \mu_{a2}}, \dots, \frac{\partial \Phi}{\partial \mu_{aN}}\right)$$

$$\int$$
amount of image voxels

Adjoint Differentiation

error function Φ is split up into subfunctions $\ \Psi^z$ given by the radiative transfer model

$$\Phi(\mu) = \left(\widetilde{\Phi} \circ \Psi^{z} \circ \ldots \circ \Psi^{z+1} \circ \Psi^{z} \circ \ldots \circ \Psi^{z} \circ \Psi^{1} \right) (\mu)$$

source iteration:
(sub-functions)

$$A\Psi^{0} = Q$$

 $A\Psi^{1} = B\Psi^{0} + Q$

 $A\Psi^2 = B\Psi^1 + Q$

Adjoint Differentiation

error function Φ is split up into subfunctions $\ \Psi^z$ given by the radiative transfer model

$$\Phi(\mu) = \left(\widetilde{\Phi} \circ \Psi^{z} \circ \ldots \circ \Psi^{z+1} \circ \Psi^{z} \circ \ldots \circ \Psi^{z} \circ \Psi^{1} \right) (\mu)$$

forward direction

Adjoint Differentiation

chain rule of differentiation

Linear: Algebraic Reconstruction

basis function q_n

$$\mathbf{Q}(\mathbf{r}) = \sum_{n=0}^{N} \mathbf{q}_{n}(\mathbf{r})$$

partial current
$$J_{m}^{+}$$

 $J_{m}^{+} = \sum_{n=0}^{N} J^{+}(q_{n})$

Linear: Algebraic Reconstruction

$$\Omega \cdot \nabla \Psi^{\times} + \left(\mu_{a} + \mu_{a}^{\times \to m} + \mu_{s} \right) \Psi^{\times} = \mu_{s} \int p(\Omega \cdot \Omega') \Psi^{\times} d\Omega'$$

$$\Omega \cdot \nabla \Psi^{m} + (\mu_{a} + \mu_{s})\Psi^{m} = \frac{1}{4\pi} \eta \mu_{a}^{x \to m} \Phi^{x} + \mu_{s} \int_{4\pi} p(\Omega \cdot \Omega') \Psi^{m} d\Omega'$$

 $10^4 - 10^5$ unknowns

10³-10⁴ measurement points -

10⁷ - 10⁹ matrix elements

Linear: Algebraic Reconstruction

matrix equation

 $(J_m^+)=(A_m)(q_n)$

minimization problem

 $||(A_{mn})(q_n) - (J_m^*)|| = min$

Kaczmarz algorithm
$$q_n^{i+1} = q_n^i + \lambda \frac{A_{mn}}{||A^m||^2} (J^+_m - A^m q^i)$$

robust good convergence

Overview

Forward Model J⁺=F(Q)

Inverse Model $Q=F^{-1}(J^+)$

Fluorescence Tomography

Bioluminescence Tomography

Phantom Experiment

© Klose 37

Phantom Experiment

wavelength:

 λ^x = 740 nm

 λ^m = 802 nm

2) Emission

Phantom Experiment

© Klose 39

Small Animal Fluorescence Imaging

radiatve transfer model is solved for all source positions on # processors

Small Animal Fluorescence Imaging

1.8 mm³, 400nM Cy5.5

In Vivo Experiments

Mouse with Lewis Lung Carcinoma (LLC)

surface-weighted image

46 source fibers

Experimental data were provided by V. Ntziachristos, MGH

© Klose 44

In Vivo Experiments

Overview

Forward Model J⁺=F(Q)

Inverse Model $Q=F^{-1}(J^{+})$

Fluorescence Tomography

Bioluminescence Tomography

Bioluminescence Tomography

Multiple Solutions

© Klose 48

Optimization of
$$\Phi(\theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{(Y_n - J_n^+(\theta))^2}{\sigma_n^2}$$

deterministic

stochastic

 $\nabla \Phi = \frac{(J^+ - Y)}{2\sigma^2} \frac{\partial J^+}{\partial Q}$

Stochastic Image Reconstruction (SIR)

First Stage - Linear Source problem

source power density is decomposed into source basis functions b_m

$$\mathbf{Q}(\mathbf{r}) \!=\! \sum_{m=0}^{M} \boldsymbol{\theta}_{m} \mathbf{b}_{m}(\mathbf{r})$$

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \mu_{\mathsf{t}} \psi(\mathbf{r}, \Omega) = \frac{\mathsf{b}_{\mathsf{m}}(\mathbf{r})}{4\pi} + \mu_{\mathsf{s}} \int_{4\pi} \mathsf{p}(\Omega, \Omega') \psi(\mathbf{r}, \Omega') \mathrm{d}\Omega'$$

boundary flux as function of unknown data variables θ_m

$$\mathbf{J}_{n}(\boldsymbol{\theta}) \!=\! \sum_{m=0}^{M} \boldsymbol{\theta}_{m} \mathbf{J}_{n}(\mathbf{b}_{m})$$

675 unknown vector elements θ_m (image)

 μ = 3,000 parent members; λ = 18,000 offspring members 900 generations

Results - Simulations

Tomographic reconstruction of two bioluminescent sources. Optical property maps are based on MRIs.

Summary

Biological tissue is highly scattering

- Equation of Radiative Transfer
- Diffusion/ Simplified Spherical Harmonics

Inverse source problem: linear/nonlinear

- optimization methods
 - gradient techniques (Adjoint Differentiation)
 - Evolution Strategy
- algebraic reconstruction

Computationally very expensive

cluster computing/efficient processor architecture

Acknowledgments

- Andreas Hielscher (Columbia University)
- Edward Larsen (University of Michigan)
- Ken Hanson (Los Alamos National Lab)
- Vasilis Ntziachristos (Harvard Medical School)

www.columbia.edu/~ak2083/publications.htm