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Noise removal filter
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Texture removal filter
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One minimizes different functional to
obtain u for these two cases

-n min TV (u) + A || f — ul|22 or
] min TV (u), s.t. [|[f —ullp2 <o

min TV (u), s.t. [|[f —ullp1 <o

.’n min TV (u) + A|lf —ul[f1 or

TV (u) = /Q |IVu(x)|de e Convex problems

ROF: Rudin-Osher-Fatemi, TV/L1: Alliney, Nikonova, Chan-Esedoglu, Yin-Goldfarb-Osher



Optimization Methods for Total Variation Based Image Restoration

Methods

PDE-based Gradient descent:
e l[ow memory usage

e slow convergence

SOCP / interior-point method:
e high memory usage

e better convergence

Network flows methods:
e l[ow memory usage

e very fast

e not as general
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The PDE-based gradient descent approach

» Euler-Lagrange Eqns for the unconstrained ROF model:

1 Vu
O0=g9g(u) = —V- — U
o(u) = 1V ()
ou L . (Homogeneous Neumann
Solve ot g(u), u(0)=f boundary condition)
to steady state
 must regularize |Vu; || i~ \/|V1u- 12+ [ Vou:|° + ¢
(] ] ]

where  Vyu, j

Uit1,j — Ui
Ui 1 — Ui

Voug ;
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The Second-Order Programming (SOCP) approach

Discrete ROF: min Z tij
1<i,5<n
S.T.
(linear) wuw4ov=Ff
(SOCs)  [[Vuy ;]| <t
(SOC) |z <o

« Handles all constrained and unconstrained ROF and
TV/L' models

* Does not require regularization

* Solved by interior-point methods

 Linear algebra 1s accelerated by applying nested dissection

SOCPs for TV-based models: Goldfarb-Yin 05’
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cl: (8w + (Vit1,5 —vig) = fit+1,5 — fiyg

C%: (0 wij+ (vij41 —vig) = fij+r — fiy

Cholesky with Nested Dissec.: multiplications (943/84)n3 -+ O(’n2 logo n)

Nested Dissection: A.George 73’

storage

(31/4)n2logon + O(n?)
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Nested Dissection
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Nested Dissectioq
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SOCP(Matlab+Mosek) numerical results
on tests using unconstrained ROF

Name Size best A total time* # of itr.
books 64x64 0.03747189 4.42 15
dotplus 100x100 0.01805139 13.68 16

scale 252%252 0.03370882 157.86 17
barbara 256x256 0.03746579 130.13 16
barbara 350%350 0.03749693 283.56 16

Solving TV/L1 by SOCP is a few times slower

* seconds on a SUN E450 with 350Mhz CPUs and 4GB memory

14
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Max flow approach outline:

applicable to anisotropic TV(u) - i.e., /[ norm
1. Decompose finto level sets F, = {z| f(x) > [}
N N 2

/il

15
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Max flow approach outline:

applicable to anisotropic TV(u) - i.e., /[ norm

1. Decompose finto level sets F, = {z| f(x) > 1}
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2. For each F}, obtain U, by solving a max-flow prob
(solving a binary minyg TV(U) + A||[F' = Ul|;1)

3. Construct a minimizer » from the minimizers U,
TV(WAAf=ullgr = | [TV(U) 4+ A = Ul ] a

Layer-cake formula: Chan-Esedoglu 05’

binvary

16
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Is it good to break the problem up into levels?

y 7
. .’ = finding a minimum cut of a capacitated network

(Why? Answer coming next......)

e For a 8-bit image, there are 28=256 levels

e For a 16-bit image, there are 21=65536 levels

e Answer depends on

1. how fast we can solve each .
2. how many .’ we need to solve

19
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A capacitated network

e A Network is a graph G with nodes and edges: G = (V, F)
e Special nodes s (source) and t (sink)

e Edges carry flow

e Each edge (/,j) has a maximum capacity ¢;;

20
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A capacitated network

e A Network is a graph G with nodes and edges: G = (V, F)
e Special nodes s (source) and t (sink)

e Edges carry flow

e Each edge (/,j) has a maximum capacity ¢;;

e An s-t cut (S,7) is a 2-partition of Vsuch thatsin S, tin T

e Cut value: the total s-t cap. across the cut=3+7+11=21

21
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A capacitated network

e A Network is a graph G with nodes and edges: G = (V, F)
e Special nodes s (source) and t (sink)

e Edges carry flow

e Each edge (/,j) has a maximum capacity ¢;;

e An s-t cut (5,7) is a 2-partition of Vsuch thatsin S, tin T
e A min s-t cut is one that gives the minimum cut value

e Cut value: the total s-t cap. across the cut=15+3=18

22
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A capacitated network

e A Network is a graph G with nodes and edges: G = (V, F)
e Special nodes s (source) and t (sink)

e Edges carry flow

e Each edge (/,j) has a maximum capacity ¢;;

e An s-t cut (5,7) is a 2-partition of Vsuch thatsin S, tin T
e A min s-t cut is one that gives the minimum cut value

e Finding a min-cut = finding a max-flow

e Cut value: the total s-t cap. across the cut=15+3=18

23
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Max flow problem G=(V,FE)
dual var. maxgz, v
s.t. (
v 1 — S
U, Z Tij — Z xj; =40 i e V\{s,t}
j:(i,9)€eE j:(40)€ERE v =t

0;j 0 < z;; <cjj, ¥(4,j) € E.

24
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Max flow problem G=(V,FE)
dual var. maxgz, v
s.t.
(v 1=
U; Z Lij — Z Tj; =40 i€V \{s,t}
HCNDISI J:(Ji)EE —v i=t
0; 0 < x5 < ¢y, V(4,j) € E.

Min cut problem (dual of above)

Minys >, <ijdi;

(i,J)eE
S.t. U; — Uy + 573]' >0, V(i,7) € E
us =0, uy =1 (0 <wu; <1, Vi implicitly)

J a binary optimal solution «*,6*. Min cut is
given by S:={i:u; =0}, T :={i:u; = 1}.

25
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
Ming >0 [uigp1 — ui| + X255 i — wyl.
Let's consider the binary problem.

26
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
Ming >0 [uigp1 — ui| + X255 i — wyl.
Let's consider the binary problem.

1. Use min|z| < minyi+ys, s.t.x <y1, —x <y, y1,y2 > 0:

27
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
Ming >0 [uigp1 — ui| + X255 i — wyl.
Let's consider the binary problem.

1. Use min|z| < minyi+ys, s.t.xz <y1, —z <y, y1,¥2 >0
We have
each min |u;41 —w| < mMind; ;11 + 841 ; i1

S.t. ujq41 —u; + 5i—|—1,i >0 .(T).
Ui — Uit 1 + 0541 >0
0j41,i03,i+1 = O-

28
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
Ming >0 [uigp1 — ui| + X255 i — wyl.
Let's consider the binary problem.

. Use min|z| < minyi+yo, s.t. x <y1, —z < yo, y1,y2 > 0:
We have

each min |u;41 —u;| < mMiné; ;41 + 641

) 1+1
S.t. ujq41 —u; + 5i—|—1,i >0 .(T).
u; — ujp1 + 90,4120
0i4-1,i» 95441 = O. G

. Each min )\|O—uz| < min )\582', S.t. 537; > Uy (uz >0 implicitly) J/)\

& min Adg;, S.t. us —u; + 64, >0 O
Ug — 0]

29
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
Ming >0 [uigp1 — ui| + X255 i — wyl.
Let's consider the binary problem.

. Use min|z| < minyi+yo, s.t. x <y1, —z < yo, y1,y2 > 0:
We have

each min |u;41 —u;| < mMiné; ;41 + 641

) 1+1
S.t. ujq41 —u; + 5i—|—1,i >0 .(T).
u; — ujp1 + ;41 >0
0j41,i03,i+1 = O- G
. Each min A|0—u;| & minMAdg;, s.t. dg; > u;  (u; > 0 implicitly) lA
S min g, S.t. us —u; 4 85 >0 O
Ug — 0

1

. Each min A|1—u;| & minAd;y, s.t. 04 > 1—u;  (u; < 1implicitly) \

< min Ao, S.t. u; —up+0;4 >0

ur =1 @
Combining 1,2,3 gives a min cut formulation!

30
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Alternative explanations for the 3 types of arcs:

In 1D, binary TV/LY: miny [jumps(U)|+MUAF)|
1.. contribution to # of jumps in U
2. 3.: contribution to the length of UAF

In 2D, binary TV/LY: ming Per(U)+MArea(UAF)
1.: contribution to Per(U)
2. 3.: contribution to Area(UAF)

where UAF ;= (F\U)U (U \ F)

31
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
MiNy 325 (w1 — wi| + A5 [fi — wil.

Let's consider the binary problem.

Example: v = (u1,...,u7)and f = (0,0,0,1,1,1,0).

32
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
MiNy 325 (w1 — wi| + A5 [fi — wil.

Let's consider the binary problem.

Example: v = (u1,...,u7)and f = (0,0,0,1,1,1,0).
e construct a network with terminal arcs de-
termined by f.

33
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
MiNy 325 (w1 — wi| + A5 [fi — wil.

Let's consider the binary problem.

Example: v = (u1,...,u7)and f = (0,0,0,1,1,1,0).
e construct a network with terminal arcs de-
termined by f.

e define an S-7" cut by letting S = {i : u; = 0}.

34
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives

Miny 355 [uip1 — wil + X255 [ fi — w4

Let's consider the binary problem.

Example: v = (u1,...,u7)and f = (0,0,0,1,1,1,0).

e construct a network with terminal arcs de-

termined by f.

e define an S-7" cut by letting S = {i : u; = 0}.
example: u; = (0,0,1,1,1,0,0).

o///g?\i.

~_

T

A

©
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In 1D, discrete min, TV (u) + A||f —ul/ ;1 gives
MiNy 325 (w1 — wi| + A5 [fi — wil.

Let's consider the binary problem.

Example: v = (u1,...,u7) and f = (0,0,0,1,1,1,0).
e construct a network with terminal arcs de-
termined by f.

e define an S-7" cut by letting S = {i : u; = 0}.
example: uv; = (0,0,1,1,1,0,0).

e energy — cut value.

O,

S 0/{/ QA\;\\Q

mlnu2|uz_|_1—uz|-l—)\2|fz—uz| =24 2. @

36
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In 2D, we have

Uu={ @ } Per(U;) = length( C D)
~ |edges cut by C D |

r

Per(U;) will get more accurately approximated
if more neighbors are used

37



Optimization Methods for Total Variation Based Image Restoration

Isotropic TV v.s. Anisotropic TV

o Viu .= U415 — U j and Vou 1= U j41 — Uj 5

e The isotropic discretization of TV (u): \/|V1u|2 + |Voul?

e An anisotropic discretization: |Viu| + |Vou|

e A better anisotropic discretization: @ OO
Given a pixel z € U, let n4(x), ng(x), and ni(x) ..
be the number of pixels which are in the four, ... +
eight, and “knight-move” connected neighbor- @@ @
hood of v outside S 2000
000 O
Per(U) = Y [0.26n4(x)+0.19ng(x)+0.06n;,(x)] T X XNelle}
xelU na(z) = 2
ng(z) = 2
ng(x) =5

Watersnake: Nguyen-Worring-van den Boomgaard 03’



In 2D, we solve
rrg]in Per(U;) + X Area(F1AU;)
l
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Outline: Further steps

1. Decompose f into K level sets F;

2. For each F., obtain U,
1. U, <@ min-cut of a network (Graph-Cut)

2. min-cut <mmmm max-flow

m=) 3, (For TV/L!) Combine K networks (para. max flow)

m=) 4. (For ROF) Reduce K max-flows to logK parametric
max- flows (e.g., K=216=65536, logk=16)

3. Construct a minimizer » from the minimizers U,

40
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Divide and conquer (Darbon & Siegelle)

.
\% 7 \‘
- B \\\\\

(a)

Divide and Conquer: Darbon-Siegelle 06’
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Max flow / min cut algorithms

o Preflow push (Goldberg-Tarjan)

— Best complexity: O(nmlog(n3/m))
e Boykov-Kolmogrov, push on path

— Uses approximate shortest path

- Not strongly polynomial

— Very fast on graph with small neighborhoods
e Parametric max flow (Gallo et al.)

- Complexity same as preflow push: O(nmlog(n?/m)), if # of
levels is O(n) ®

— Arcs out of source have increasing capacities /

— Arcs into sink have decreasing capacities m

K

Preflow: Goldberg-Tarjan, B-K: Boykov-Kolmogrov 04’ O

Parametric: Gallo, Grigoriadis, Tarjan 89’, Hochbaum 01’
42



Optimization Methods for Total Variation Based Image Restoration

Max-flow (Matlab/C++) numerical results

Model Name Size best A total time
TV/L1 Barbara 512x512 0.5 0.96
(8-bit)
TV/L1 Barbara 1024x1024 0.5 3.98
(8-bit)
ROF Barbara 512x512 0.0375 1.83
(8-bit)
ROF Barbara 1024%x1024 0.0375 7.50
(8-bit)
ROF Barbara 1024x1024 0.0375 13.5
(16-bit)

Laptop - CPU: Pentium Duo 2.0GHz, Memory: 1.5 GB

43



Input f Output u

A> N\,
Sl S2 S3 S4 55
A1 A2 A3 g s

19.40 13.40 7.96 4.57 2.35




Input f

A >A> A,
S1 So S3 Sa Sk
A1 A2 A3 g s

19.40

13.40 7.96 4.57 2.35

Output «
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Input f

Ap>A> g
S1 So S3 Sa Sk
A1 A2 A3 g s

19.40

13.40 7.96 4.57 2.35

Output «

46



Input f

Az>A> N\,
S1 So S3 Sa Sk
A1 A2 A3 g s

19.40

13.40 7.96 4.57 2.35

Output u
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Input f

Ag>A> g
S1 So S3 Sa Sk
A1 A2 A3 g s

19.40

13.40 7.96 4.57 2.35

Output u
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Input f

As>A>0
S1 So S3 Sa Sk
A1 A2 A3 g s

19.40

13.40 7.96 4.57 2.35

Output u

49
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f(TV/LH)= u+v

f(TV/LD)= u4v = u/v

BRl:] EEERE e
I J449 -0
£ & III EEEEREE

Face illumination correction: Chen-Yin-Zhou-Domaniciu-Huang 06’ -



Image Barbara

512x512
Model TV/L1
1-threaded
Grayscale 8-bit
Lambda 1.0
# neighbors 16
Initial graph 0.48

construction time

Parametric max-flow 1.37
time

Divide-n-conquer 2.49
max-flow time

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



Image Noisy Barbara

512x512
Model ROF
Divide-n-Con.
Grayscale 8-bit
Lambda 0.025
# neighbors 16
Initial graph 0.84
construction time
Parametric max-flow 3.59
time
Divide-n-conquer max- 6.39
flow time

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



Image CT 512x512

Model TV/L1
1-threaded

Grayscale 8-bit

Lambda 0.5

# neighbors 16

Initial graph construction | 0.78

time

Parametric max-flow 2.47
time

Divide-n-conquer max- 4.96
flow time

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



Image CT 512x512

Model TV/L1
1-threaded

Grayscale 8-bit

Lambda 1.0

# neighbors 16

Initial graph construction | 0.48

time

Parametric max-flow 1.12
time

Divide-n-conquer max- 2.33
flow time

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



3D Brain MRI Image, Original, Size: 181x217x181 (1mmx1mmx1mm)
Used as input for TV/L1

T1 3D image: T2 3D image:

z=50

z=100 z=100




z=100

Image Brain MRI T1
181x217x181
Model TV/L1
1-threaded
Grayscale 8-bit
Lambda 1.0
# neighbors 6
Initial graph 6.55
construction time
Parametric max-flow 23.18
time
Divide-n-conquer max- 67.56
flow time
: Linux

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System




3D Brain MRI Image, 5% noise, Size: 181x217x181 (1Tmmx1Tmmx1mm)
Used as input for ROF

T1 3D image: T2 3D image:

z=50

z=100 z=100




z=100

Image (noisy) Brain MRI T1
181x217x181

Model ROF
Divide-n-Con.

Grayscale 8-bit

Lambda 0.3

# neighbors 6

Initial graph 7.09

construction time

Parametric max-flow

time

Divide-n-conquer max- 41.18

flow time

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux




Image (noisy) Brain MRI T2
181x217x181

Model ROF
Divide-n-Con.

Grayscale 8-bit

Lambda 0.3

# neighbors 6

Initial graph 7.11

construction time

Parametric max-flow

time

Divide-n-conquer max- 34.12

flow time

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux




lterative regularization

min {J(u)+ H(u, f)}

J and H are convex functionals of u, J(#)>0,J(0)=0,H(u, f)=0

l[terate wu, =argmin{J(u)+ H(u, f)—<u,p,_, >}

ueBV (Q)

where subgradient p, =0<€dJ(u,), p,_, €J(u,_,)



Bregman Distance

D(u,v)=J(u)=J(vV)=<p,u—v>
for p € 6J(u),1s the Bregman distance assoc. with J(-)

e D(u,v)>0and D(u,v) =01ff u =v (for J(-) str. convex)
e D(u,v)# D(v,u) n general
e A inequality does not hold



Convergence Analysis

e {H(u,,f)}1s monotonically non - increasing
H(u, f)<H@u,, f)+Du,u_ ) <H@u,_, f)

e MAINTHEOREM

If (1) g 1sthe true noise free image
(1) H(g,g)=0
(iii) H(g, f)<6° (5° : noise level)
then the distance between u, and g decreases,1.e.,
D(g,u,) < D(g,u,)+D(u,u, )< D(g,u,_,)
aslongas H(u,, f)> 0"



One-step ROF

(a) original (b) noisy f, SNR=14.8 (c) noise+128, §=10.0

‘;:'-'-'“.‘.-'1";_':-. —

C

(e) f-u+128, [[f-ul| 2=10.2 (f) (f-u)-noise+128

ROF with A = 0.085, ||f — ul|;2 &~ 4§, signal conlained in v = f — u.



Iterative ROF regularization

(a) u,: 1st step (b) u,: 2nd step (c) u,: 3rd step (9) u,: 4th step

(o) f-u,+128 (e) f-u,+128 (f) f-u +128 () t-u,+128

ROF with iterated refinement with 0 =10and A =0.013

Best resolution obtained at £ = 4. Noise returns in ug, u,, ...



Iterated ROF regularization

(a) original (b) noisy f, SNR=6.3 (c) noise+128, 5=40

U] u,: 3rd step

(d) u,: 1st step

P S

(g) f-u, +128 (h) f-u,+128 (i) f-u,+128




Deblurring + DenOiSing Gaussian blur/noise, =10 and 2=0.1

(a) original (b) blurred (before adding noise) (c) blurred, noisy f

. %

u 2nd step (}u 3rd step

() u,: 4th step h) f-A*u,+128 (i) f-A*u,+128

-AH B
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