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Image Processing

filter black box
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Noise removal filter
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Texture removal filter



6

Optimization Methods for Total Variation Based Image Restoration

One minimizes different functional to
obtain u for these two cases

ROF: Rudin-Osher-Fatemi, TV/L1: Alliney, Nikonova, Chan-Esedoglu, Yin-Goldfarb-Osher
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Methods

PDE-based Gradient descent:

• low memory usage

• slow convergence

SOCP / interior-point method:

• high memory usage

• better convergence

Network flows methods:

• low memory usage

• very fast

• not as general
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The PDE-based gradient descent approach

• Euler-Lagrange Eqns for the unconstrained ROF model:

• Solve

to steady state

• must regularize

where

(Homogeneous Neumann
boundary condition)
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The Second-Order Programming (SOCP) approach

Discrete ROF:

• Handles all constrained and unconstrained ROF and
TV/L1 models
• Does not require regularization
• Solved by interior-point methods
• Linear algebra is accelerated by applying nested dissection

SOCPs for TV-based models: Goldfarb-Yin 05’
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Cholesky with Nested Dissec.:

Nested Dissection: A.George 73’



11

Optimization Methods for Total Variation Based Image Restoration

Nested Dissection
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154.420.0374718964×64books

17157.860.03370882252×252scale

16283.560.03749693350×350barbara

16130.130.03746579256×256barbara

1613.680.01805139100×100dotplus

# of itr.total time*best λSizeName

SOCP(Matlab+Mosek) numerical results
on tests using unconstrained ROF

Solving TV/L1 by SOCP is a few times slower

* seconds on a SUN E450 with 350Mhz CPUs and 4GB memory
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Max flow approach outline:

1. Decompose � into level sets

applicable to anisotropic TV(u) – i.e., l1 norm
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Max flow approach outline:

1. Decompose � into level sets

2. For each ��, obtain �� by solving a max-flow prob

3. Construct a minimizer � from the minimizers ��

applicable to anisotropic TV(u) – i.e., l1 norm

Layer-cake formula: Chan-Esedoglu 05’
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Requires monotonicity of
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Is it good to break the problem up into levels?

• = finding a minimum cut of a capacitated network

(Why? Answer coming next……)

• For a 8-bit image, there are 28=256 levels

• For a 16-bit image, there are 216=65536 levels

• Answer depends on

1. how fast we can solve each

2. how many we need to solve
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• A Network is a graph G with nodes and edges:
• Special nodes s (source) and t (sink)
• Edges carry flow
• Each edge (i,j) has a maximum capacity ci,j

A capacitated network

ts
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• A Network is a graph G with nodes and edges:
• Special nodes s (source) and t (sink)
• Edges carry flow
• Each edge (i,j) has a maximum capacity ci,j
• An s-t cut (S,T) is a 2-partition of V such that s in S, t in T

A capacitated network

ts

• Cut value: the total s-t cap. across the cut=3+7+11=21
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• A Network is a graph G with nodes and edges:
• Special nodes s (source) and t (sink)
• Edges carry flow
• Each edge (i,j) has a maximum capacity ci,j
• An s-t cut (S,T) is a 2-partition of V such that s in S, t in T
• A min s-t cut is one that gives the minimum cut value

A capacitated network

ts

• Cut value: the total s-t cap. across the cut=15+3=18
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• A Network is a graph G with nodes and edges:
• Special nodes s (source) and t (sink)
• Edges carry flow
• Each edge (i,j) has a maximum capacity ci,j
• An s-t cut (S,T) is a 2-partition of V such that s in S, t in T
• A min s-t cut is one that gives the minimum cut value
• Finding a min-cut = finding a max-flow

A capacitated network

ts

• Cut value: the total s-t cap. across the cut=15+3=18
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Max flow problem
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Max flow problem

Min cut problem (dual of above)
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s
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s

t
Combining 1,2,3 gives a min cut formulation!
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Isotropic TV v.s. Anisotropic TV

Watersnake: Nguyen-Worring-van den Boomgaard 03’
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t

s
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Outline: Further steps

1. Decompose � into � level sets ��
2. For each ��, obtain ��

1. �� min-cut of a network (Graph-Cut)
2. min-cut max-flow
3. (For TV/L1) Combine � networks (para. max flow)
4. (For ROF) Reduce � max-flows to log� parametric

max- flows (e.g., K=216=65536, logK=16)

3. Construct a minimizer � from the minimizers ��
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Divide and conquer (Darbon & Siegelle)

G1

G1G2

G1

G1
G2

G0

G1 G2

Divide and Conquer: Darbon-Siegelle 06’
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Max flow / min cut algorithms

• Preflow push (Goldberg-Tarjan)
– Best complexity: O(nmlog(n2/m))

• Boykov-Kolmogrov, push on path
– Uses approximate shortest path
– Not strongly polynomial
– Very fast on graph with small neighborhoods

• Parametric max flow (Gallo et al.)
– Complexity same as preflow push: O(nmlog(n2/m)), if # of

levels is O(n)
– Arcs out of source have increasing capacities
– Arcs into sink have decreasing capacities

s

t

network

Preflow: Goldberg-Tarjan, B-K: Boykov-Kolmogrov 04’
Parametric: Gallo, Grigoriadis, Tarjan 89’, Hochbaum 01’
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ROF

ROF

ROF

TV/L1

TV/L1

Model

0.960.5512×512Barbara
(8-bit)

1.830.0375512×512Barbara
(8-bit)

13.50.03751024×1024Barbara
(16-bit)

7.500.03751024×1024Barbara
(8-bit)

3.980.51024×1024Barbara
(8-bit)

total timebest λSizeName

Max-flow (Matlab/C++) numerical results

Laptop - CPU: Pentium Duo 2.0GHz, Memory: 1.5 GB
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���1

Input � Output �
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�1����2

Input � Output �
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�2����3

Input � Output �
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�3����4

Input � Output �
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�4����5

Input � Output �



49

Optimization Methods for Total Variation Based Image Restoration

�5����

Input � Output �
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Face illumination correction: Chen-Yin-Zhou-Domaniciu-Huang 06’



2.49Divide-n-conquer
max-flow time

1.37Parametric max-flow
time

0.48Initial graph
construction time

16# neighbors

1.0Lambda

8-bitGrayscale

TV/L1
1-threaded

Model

Barbara
512x512

Image

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



6.39Divide-n-conquer max-
flow time

3.59Parametric max-flow
time

0.84Initial graph
construction time

16# neighbors

0.025Lambda

8-bitGrayscale

ROF
Divide-n-Con.

Model

Noisy Barbara
512x512

Image

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



4.96Divide-n-conquer max-
flow time

2.47Parametric max-flow
time

0.78Initial graph construction
time

16# neighbors

0.5Lambda

8-bitGrayscale

TV/L1
1-threaded

Model

CT 512x512Image

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



2.33Divide-n-conquer max-
flow time

1.12Parametric max-flow
time

0.48Initial graph construction
time

16# neighbors

1.0Lambda

8-bitGrayscale

TV/L1
1-threaded

Model

CT 512x512Image

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



3D Brain MRI Image, Original, Size: 181x217x181 (1mmx1mmx1mm)
Used as input for TV/L1

T1 3D image:

z=50

z=100

T2 3D image:

z=50

z=100



67.56Divide-n-conquer max-
flow time

23.18Parametric max-flow
time

6.55Initial graph
construction time

6# neighbors

1.0Lambda

8-bitGrayscale

TV/L1
1-threaded

Model

Brain MRI T1
181x217x181

Image

z=50

z=100

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



3D Brain MRI Image, 5% noise, Size: 181x217x181 (1mmx1mmx1mm)
Used as input for ROF

T1 3D image:

z=50

z=100

T2 3D image:

z=50

z=100



41.18Divide-n-conquer max-
flow time

Parametric max-flow
time

7.09Initial graph
construction time

6# neighbors

0.3Lambda

8-bitGrayscale

ROF
Divide-n-Con.

Model

Brain MRI T1
181x217x181

Image (noisy)

z=50

z=100

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



34.12Divide-n-conquer max-
flow time

Parametric max-flow
time

7.11Initial graph
construction time

6# neighbors

0.3Lambda

8-bitGrayscale

ROF
Divide-n-Con.

Model

Brain MRI T2
181x217x181

Image (noisy)

z=50

z=100

CPU: AMD Opteron 1Ghz, Memory: 3GB Op. System: Linux



Iterative regularization
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Bregman Distance
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Convergence Analysis
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One-step ROF



Iterative ROF regularization

K,,inreturnsNoise.4atobtainedresolutionBest
013.0and10withrefinementiteratedwithROF

65 uuk =
== λδ



Iterated ROF regularization



Deblurring + Denoising Gaussian blur/noise, δ=10 and λ=0.1
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