Optimization Methods for Total Variation Based Image Restoration

> D.Goldfarb (Columbia University) joint with W.Yin (Rice University)

Workshop on Inverse Problem at Columbia University, 05-03-2007

Image Processing

filter black box

f

 \boldsymbol{u}

Optimization Methods for Total Variation Based Image Restoration

Noise removal filter

 \boldsymbol{u}

One minimizes different functional to obtain *u* for these two cases

$$TV(\mathbf{u}) := \int_{\Omega} |\nabla \mathbf{u}(x)| dx$$
 • Convex problems

ROF: Rudin-Osher-Fatemi, TV/L1: Alliney, Nikonova, Chan-Esedoglu, Yin-Goldfarb-Osher

Methods

PDE-based Gradient descent:

- low memory usage
- slow convergence

SOCP / interior-point method:

- high memory usage
- better convergence

Network flows methods:

- low memory usage
- very fast
- not as general

The PDE-based gradient descent approach

• Euler-Lagrange Eqns for the *unconstrained* ROF model:

$$0 = g(u) := \frac{1}{2\lambda} \nabla \cdot \frac{\nabla u}{|\nabla u|} + (f - u)$$

• Solve
$$\frac{\partial u}{\partial t} = g(u), \quad u(0) = f$$
 (Homogeneous Neumann boundary condition)

to steady state

• must regularize
$$\|\nabla u_{ij}\| \approx \sqrt{|\nabla_1 u_{ij}|^2 + |\nabla_2 u_{ij}|^2 + \varepsilon}$$

where
$$\nabla_1 u_{i,j} := u_{i+1,j} - u_{i,j}$$

 $\nabla_2 u_{i,j} := u_{i,j+1} - u_{i,j}$

The Second-Order Programming (SOCP) approach

Discrete ROF:

(SOCs)
$$\|\nabla u_{i,j}\| \le t_{ij}$$

(SOC) $\|v\|_{l^2}^2 \le \sigma^2.$

- Handles all *constrained* and *unconstrained* ROF and TV/L^1 models
- Does not require regularization
- Solved by interior-point methods
- Linear algebra is accelerated by applying *nested dissection*

$$C^{1}: (\partial_{x}^{+}u)_{i,j} + (v_{i+1,j} - v_{i,j}) = f_{i+1,j} - f_{i,j}$$
$$C^{2}: (\partial_{y}^{+}u)_{i,j} + (v_{i,j+1} - v_{i,j}) = f_{i,j+1} - f_{i,j}$$

Cholesky with Nested Dissec.: multiplications $(943/84)n^3 + O(n^2 \log_2 n)$ storage $(31/4)n^2 \log_2 n + O(n^2)$

Nested Dissection: A.George 73'

12

SOCP(Matlab+Mosek) numerical results on tests using unconstrained ROF

Name	Size	best λ	total time*	# of itr.
books	64×64	0.03747189	4.42	15
dotplus	100×100	0.01805139	13.68	16
scale	252×252	0.03370882	157.86	17
barbara	256×256	0.03746579	130.13	16
barbara	350×350	0.03749693	283.56	16

Solving TV/L1 by SOCP is a few times slower

* seconds on a SUN E450 with 350Mhz CPUs and 4GB memory

Max flow approach outline: applicable to anisotropic TV(u) – i.e., *I*₁ norm

1. Decompose *f* into level sets $F_l = \{x \mid f(x) \ge l\}$

Max flow approach outline: applicable to anisotropic TV(u) – i.e., I_1 norm

1. Decompose *f* into level sets $F_l = \{x \mid f(x) \ge l\}$

- 2. For each F_{i} , obtain U_{i} by solving a max-flow prob (solving a **binary** min_U $TV(U) + \lambda ||F - U||_{L^1}$)
- 3. Construct a minimizer u from the minimizers U_l $TV(\boldsymbol{u}) + \lambda \|f - \boldsymbol{u}\|_{L^{1}} = \int_{levels} \underbrace{\left[TV(\boldsymbol{U}_{l}) + \lambda \|F_{l} - \boldsymbol{U}_{l}\|_{L^{1}}\right]}_{\text{binary}} \mathrm{d}l$

Layer-cake formula: Chan-Esedoglu 05'

Optimization Methods for Total Variation Based Image Restoration

Is it good to break the problem up into levels?

- finding a minimum cut of a capacitated network (Why? Answer coming next.....)
- For a 8-bit image, there are $2^8 = 256$ levels
- For a 16-bit image, there are 2¹⁶=65536 levels
- Answer depends on

- 1. how fast we can solve each
- 2. how many

we need to solve

- A Network is a graph G with *nodes* and *edges*: G = (V, E)
- Special nodes *s* (source) and *t* (sink)
- Edges carry flow
- Each edge (*i*,*j*) has a maximum capacity *c*_{*i*,*j*}

- A Network is a graph G with *nodes* and *edges*: G = (V, E)
- Special nodes *s* (source) and *t* (sink)
- Edges carry flow
- Each edge (*i*,*j*) has a maximum capacity *c*_{*i*,*i*}
- An *s*-*t* cut (*S*,*T*) is a 2-partition of *V* such that *s* in *S*, *t* in *T*

• *Cut value*: the total *s*-*t* cap. across the cut=3+7+11=21

- A Network is a graph G with *nodes* and *edges*: G = (V, E)
- Special nodes *s* (source) and *t* (sink)
- Edges carry flow
- Each edge (*i*,*j*) has a maximum capacity *c*_{*i*,*i*}
- An *s*-*t* cut (*S*,*T*) is a 2-partition of *V* such that *s* in *S*, *t* in *T*
- A min *s*-*t* cut is one that gives the minimum cut value

• *Cut value*: the total *s*-*t* cap. across the cut=15+3=18

- A Network is a graph G with *nodes* and *edges*: G = (V, E)
- Special nodes *s* (source) and *t* (sink)
- Edges carry flow
- Each edge (*i*,*j*) has a maximum capacity *c*_{*i*,*i*}
- An *s*-*t* cut (*S*,*T*) is a 2-partition of *V* such that *s* in *S*, *t* in *T*
- A min *s*-*t* cut is one that gives the minimum cut value
- Finding a min-cut = finding a max-flow

• *Cut value*: the total *s*-*t* cap. across the cut=15+3=18

Optimization Methods for Total Variation Based Image Restoration

Max flow problem
$$G = (V, E)$$

dual var. $\max_{x,v} v$

s.t.

$$u_{i} \qquad \sum_{j:(i,j)\in E} x_{ij} - \sum_{j:(j,i)\in E} x_{ji} = \begin{cases} v & i = s \\ 0 & i \in V \setminus \{s,t\} \\ -v & i = t \end{cases}$$

$$\delta_{ij} \qquad 0 \le x_{ij} \le c_{ij}, \ \forall (i,j) \in E.$$

Max flow problem
$$G = (V, E)$$

dual var. $\max_{x,v} v$

s.t.

$$u_{i} \qquad \sum_{j:(i,j)\in E} x_{ij} - \sum_{j:(j,i)\in E} x_{ji} = \begin{cases} v & i = s \\ 0 & i \in V \setminus \{s,t\} \\ -v & i = t \end{cases}$$

$$\delta_{ij} \qquad 0 \le x_{ij} \le c_{ij}, \ \forall (i,j) \in E.$$

Min cut problem (dual of above)

$$\begin{split} \min_{u,\delta} & \sum_{(i,j)\in E} c_{ij}\delta_{ij} \\ \text{s.t.} & u_i - u_j + \delta_{ij} \geq 0, \ \forall (i,j) \in E \\ & u_s = 0, \ u_t = 1 \\ & \delta_{ij} \geq 0, \ \forall (i,j) \in E. \end{split} \tag{0} \leq u_i \leq 1, \ \forall i \text{ implicitly}) \end{split}$$

 \exists a **binary** optimal solution u^*, δ^* . Min cut is given by $S := \{i : u_i^* = 0\}, T := \{i : u_i^* = 1\}.$

Let's consider the **binary** problem.

Let's consider the **binary** problem.

1. Use $\min |x| \Leftrightarrow \min y_1 + y_2$, s.t. $x \le y_1$, $-x \le y_2$, $y_1, y_2 \ge 0$:

Let's consider the **binary** problem.

1. Use $\min |x| \Leftrightarrow \min y_1 + y_2$, s.t. $x \le y_1, -x \le y_2, y_1, y_2 \ge 0$: We have each $\min |u_{i+1} - u_i| \Leftrightarrow \min \delta_{i,i+1} + \delta_{i+1,i}$ *i*

s.t.
$$u_{i+1} - u_i + \delta_{i+1,i} \ge 0$$

 $u_i - u_{i+1} + \delta_{i,i+1} \ge 0$
 $\delta_{i+1,i}, \delta_{i,i+1} \ge 0.$

· 1 -1

In 1D, discrete $\min_u TV(u) + \lambda ||f - u||_{L^1}$ gives $\min_u \sum_i |u_{i+1} - u_i| + \lambda \sum_i |f_i - u_i|.$ Let's consider the **binary** problem.

1. Use $\min |x| \Leftrightarrow \min y_1 + y_2$, s.t. $x \le y_1$, $-x \le y_2$, $y_1, y_2 \ge 0$: We have each $\min |u_{i+1} - u_i| \Leftrightarrow \min \delta_{i,i+1} + \delta_{i+1,i}$ s.t. $u_{i+1} - u_i + \delta_{i+1,i} \ge 0$ $u_i - u_{i+1} + \delta_{i,i+1} \ge 0$ $\delta_{i+1,i}, \delta_{i,i+1} \ge 0$. 2. Each $\min \lambda |0 - u_i| \Leftrightarrow \min \lambda \delta_{si}$, s.t. $\delta_{si} \ge u_i$ $(u_i \ge 0 \text{ implicitly})$ $\Leftrightarrow \min \lambda \delta_{si}$, s.t. $u_s - u_i + \delta_{si} \ge 0$ $u_s = 0$ In 1D, discrete $\min_u TV(u) + \lambda ||f - u||_{L^1}$ gives $\min_u \sum_i |u_{i+1} - u_i| + \lambda \sum_i |f_i - u_i|.$ Let's consider the **binary** problem.

1. Use min $|x| \Leftrightarrow \min y_1 + y_2$, s.t. $x < y_1, -x < y_2, y_1, y_2 > 0$: We have each min $|u_{i+1} - u_i| \iff \min \delta_{i,i+1} + \delta_{i+1,i}$ s.t. $u_{i+1} - u_i + \delta_{i+1,i} \ge 0$ $u_i - u_{i+1} + \delta_{i,i+1} \ge 0$ $\delta_{i+1,i}, \delta_{i,i+1} \ge 0.$ 2. Each min $\lambda |0-u_i| \Leftrightarrow \min \lambda \delta_{si}$, s.t. $\delta_{si} \ge u_i$ $(u_i \ge 0 \text{ implicitly})$ $\Leftrightarrow \min \lambda \delta_{si}$, s.t. $u_s - u_i + \delta_{si} \ge 0$ $u_{\rm s}=0$ 3. Each min $\lambda |1-u_i| \Leftrightarrow \min \lambda \delta_{it}$, s.t. $\delta_{it} \ge 1-u_i$ $(u_i \le 1 \text{ implicitly})$ $\Leftrightarrow \min \lambda \delta_{si}$, s.t. $u_i - u_t + \delta_{it} \ge 0$ $u_{t} = 1$ Combining 1,2,3 gives a min cut formulation!

Alternative explanations for the 3 types of arcs:

In 1D, binary TV/ L^1 : min_U |jumps(U)|+ $\lambda |U \triangle F|$ 1.: contribution to # of jumps in U 2. 3.: contribution to the length of $U \triangle F$

In 2D, binary TV/ L^1 : min_U Per(U)+ λ Area($U \triangle F$)

- 1.: contribution to Per(U)
- 2. 3.: contribution to Area $(U \triangle F)$

where $U \triangle F := (F \setminus U) \cup (U \setminus F)$

Let's consider the **binary** problem.

Example: $u = (u_1, \dots, u_7)$ and f = (0, 0, 0, 1, 1, 1, 0).

Let's consider the **binary** problem.

Example: $u = (u_1, \dots, u_7)$ and f = (0, 0, 0, 1, 1, 1, 0).

• construct a network with terminal arcs determined by f.

Let's consider the **binary** problem.

Example: $u = (u_1, \dots, u_7)$ and f = (0, 0, 0, 1, 1, 1, 0).

• construct a network with terminal arcs determined by f.

• define an S-T cut by letting $S = \{i : u_i = 0\}$.

Let's consider the **binary** problem.

Example: $u = (u_1, \dots, u_7)$ and f = (0, 0, 0, 1, 1, 1, 0).

• construct a network with terminal arcs determined by f.

• define an S-T cut by letting $S = \{i : u_i = 0\}$. example: $u_i = (0, 0, 1, 1, 1, 0, 0)$.

Let's consider the **binary** problem.

Example: $u = (u_1, \dots, u_7)$ and f = (0, 0, 0, 1, 1, 1, 0).

• construct a network with terminal arcs determined by f.

• define an S-T cut by letting $S = \{i : u_i = 0\}$. example: $u_i = (0, 0, 1, 1, 1, 0, 0)$.

In 2D, we have

$$U_{l} = \{ \bullet \} \qquad Per(U_{l}) = length(\bigcirc) \\ \approx |edges cut by \bigcirc |$$

 $Per(U_l)$ will get more accurately approximated if more neighbors are used

Isotropic *TV* v.s. Anisotropic *TV*

- $\nabla_1 u := u_{i+1,j} u_{i,j}$ and $\nabla_2 u := u_{i,j+1} u_{i,j}$
- The isotropic discretization of TV(u): $\sqrt{|\nabla_1 u|^2 + |\nabla_2 u|^2}$
- An anisotropic discretization: $|\nabla_1 u| + |\nabla_2 u|$
- A better anisotropic discretization:

Given a pixel $x \in U$, let $n_4(x)$, $n_8(x)$, and $n_k(x)$ be the number of pixels which are in the four, eight, and "knight-move" connected neighborhood of v outside S

$$Per(U) = \sum_{x \in U} [0.26n_4(x) + 0.19n_8(x) + 0.06n_k(x)]$$

Watersnake: Nguyen-Worring-van den Boomgaard 03'

38

Outline: Further steps

- 1. Decompose f into K level sets F_i
- 2. For each F_i , obtain U_i
 - 1. U_i min-cut of a network (Graph-Cut)
 - 2. min-cut max-flow
- \implies 3. (For TV/ L^1) Combine K networks (para. max flow)
- → 4. (For ROF) Reduce K max-flows to $\log K$ parametric max- flows (e.g., $K=2^{16}=65536$, $\log K=16$)
 - 3. Construct a minimizer u from the minimizers U_i

Divide and conquer (Darbon & Siegelle)

Max flow / min cut algorithms

- Preflow push (Goldberg-Tarjan)
 - Best complexity: $O(nm\log(n^2/m))$
- Boykov-Kolmogrov, push on path
 - Uses approximate shortest path
 - Not strongly polynomial
 - Very fast on graph with small neighborhoods
- Parametric max flow (Gallo et al.)
 - Complexity same as preflow push: O(nmlog(n²/m)), if # of levels is O(n)
 - Arcs out of source have *increasing* capacities
 - Arcs into sink have *decreasing* capacities

Max-flow (Matlab/C++) numerical results

Model	Name	Size	best λ	total time
TV/L ¹	Barbara (8-bit)	512×512	0.5	0.96
TV/L^1	Barbara (8-bit)	1024×1024	0.5	3.98
ROF	Barbara (8-bit)	512×512	0.0375	1.83
ROF	Barbara (8-bit)	1024×1024	0.0375	7.50
ROF	Barbara (16-bit)	1024×1024	0.0375	13.5

Laptop - CPU: Pentium Duo 2.0GHz, Memory: 1.5 GB

S_1	S_2	S_3	S_4	S_5
λ_1	λ_2	λ_3	λ_4	λ_5
19.40	13.40	7.96	4.57	2.35

S_1	<i>S</i> ₂	S_3	S_4	S_5
λ_1	λ_2	λ_3	λ_4	λ_5
19.40	13.40	7.96	4.57	2.35

S_1	S_2	S_3	S_4	S_5
λ_1	λ_2	λ_3	λ_4	λ_5
19.40	13.40	7.96	4.57	2.35

S_1	S_2	S_3	S_4	S_5
λ_1	λ_2	λ_3	λ_4	λ_5
19.40	13.40	7.96	4.57	2.35

S_1	S_2	S_3	S_4	S_5
λ_1	λ_2	λ_3	λ_4	λ_5
19.40	13.40	7.96	4.57	2.35

S_1	S_2	S_3	S_4	S_5
λ_1	λ_2	λ_3	λ_4	λ_5
19.40	13.40	7.96	4.57	2.35

 $f(TV/L^1) \Longrightarrow u + v$

 $f (TV/L^1) \Longrightarrow u + v \Longrightarrow u/v$

Face illumination correction: Chen-Yin-Zhou-Domaniciu-Huang 06'

Image	Barbara 512x512
Model	TV/L1 1-threaded
Grayscale	8-bit
Lambda	1.0
# neighbors	16
Initial graph construction time	0.48
Parametric max-flow time	1.37
Divide-n-conquer max-flow time	2.49

Image	Noisy Barbara 512x512
Model	ROF Divide-n-Con.
Grayscale	8-bit
Lambda	0.025
# neighbors	16
Initial graph construction time	0.84
Parametric max-flow time	3.59
Divide-n-conquer max- flow time	6.39

Image	CT 512x512
Model	TV/L1 1-threaded
Grayscale	8-bit
Lambda	0.5
# neighbors	16
Initial graph construction time	0.78
Parametric max-flow time	2.47
Divide-n-conquer max- flow time	4.96

Image	CT 512x512
Model	TV/L1 1-threaded
Grayscale	8-bit
Lambda	1.0
# neighbors	16
Initial graph construction time	0.48
Parametric max-flow time	1.12
Divide-n-conquer max- flow time	2.33

3D Brain MRI Image, Original, Size: 181x217x181 (1mmx1mmx1mm) Used as input for TV/L1

T1 3D image:

T2 3D image:

z=50

z=100

z=50

z=100

z=50

Image	Brain MRI T1 181x217x181
Model	TV/L1 1-threaded
Grayscale	8-bit
Lambda	1.0
# neighbors	6
Initial graph construction time	6.55
Parametric max-flow time	23.18
Divide-n-conquer max- flow time	67.56

3D Brain MRI Image, 5% noise, Size: 181x217x181 (1mmx1mmx1mm) Used as input for ROF

T1 3D image:

T2 3D image:

z=100

z=50

z=50

z=100

z=50

Image (noisy)	Brain MRI T1 181x217x181
Model	ROF Divide-n-Con.
Grayscale	8-bit
Lambda	0.3
# neighbors	6
Initial graph construction time	7.09
Parametric max-flow time	
Divide-n-conquer max- flow time	41.18

z=50

Image (noisy)	Brain MRI T2 181x217x181
Model	ROF Divide-n-Con.
Grayscale	8-bit
Lambda	0.3
# neighbors	6
Initial graph construction time	7.11
Parametric max-flow time	
Divide-n-conquer max- flow time	34.12

Iterative regularization

$\min_{u} \{J(u) + H(u, f)\}$

J and H are convex functionals of $u, J(u) \ge 0, J(0) = 0, H(u, f) \ge 0$

Iterate
$$u_k = \underset{u \in BV(\Omega)}{\arg\min} \{ J(u) + H(u, f) - \langle u, p_{k-1} \rangle \}$$

where subgradient $p_0 = 0 \in \partial J(u_0), p_{k-1} \in \partial J(u_{k-1})$

Bregman Distance

$$D(u, v) = J(u) - J(v) - \langle p, u - v \rangle$$

for $p \in \partial J(u)$, is the Bregman distance assoc. with $J(\cdot)$

- $D(u,v) \ge 0$ and D(u,v) = 0 iff u = v (for $J(\cdot)$ str. convex)
- $D(u,v) \neq D(v,u)$ in general
- Δ inequality does not hold

Convergence Analysis

- { $H(u_k, f)$ } is monotonically non increasing $H(u_k, f) \le H(u_k, f) + D(u_k, u_{k-1}) \le H(u_{k-1}, f)$
- MAIN THEOREM

If (i) g is the true noise free image (ii) H(g,g) = 0(iii) $H(g,f) \le \delta^2 (\delta^2$: noise level) then the distance between u_k and g decreases, i.e., $D(g,u_k) \le D(g,u_k) + D(u_k,u_{k-1}) \le D(g,u_{k-1})$ as long as $H(u_k, f) > \delta^2$

One-step ROF

ROF with $\lambda = 0.085$, $||f - u||_{L^2} \approx \delta$, signal contained in v = f - u.

Iterative ROF regularization (a) u₁: 1st step (b) u₂: 2nd step (c) u₃: 3rd step (g) u_{4} : 4th step (d) f-u₁+128 (e) f-u₂+128 (f) f-u₃+128 (j) f-u₄+128

ROF with iterated refinement with $\delta = 10$ and $\lambda = 0.013$ Best resolution obtained at k = 4. Noise returns in u_5, u_6, \dots

Iterated ROF regularization

(a) original

(d) u₁: 1st step

(g) f–u₁+128

(b) noisy f, SNR=6.3

(e) u₂: 2nd step

(h) f-u₂+128

(c) noise+128, δ=40

(f) u3: 3rd step

(i) f-u₃+128

-

Deblurring + Denoising

(a) original

(d) u₁: 1st step

(g) u₄: 4th step

(b) blurred (before adding noise)

(e) u₂: 2nd step

(h) f-A*u₁+128

Gaussian blur/noise, δ =10 and λ =0.1

(c) blurred, noisy f

(f) u₃: 3rd step

(i) f-A*u₂+128

